a2 United States Patent

Xu et al.

US009336270B2

US 9,336,270 B2
*May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

TECHNIQUES FOR ACCESSING A
PARALLEL DATABASE SYSTEM VIA
EXTERNAL PROGRAMS USING VERTICAL
AND/OR HORIZONTAL PARTITIONING

Applicant: Teradata US, Inc., Dayton, OH (US)

Inventors: Yu Xu, Burlingame, CA (US); Olli
Pekka Kostamaa, Santa Monica, CA

(US)
Assignee: Teradata US, Inc., Dayton, OH (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/218,160

Filed: Mar. 18,2014
Prior Publication Data
US 2014/0222787 Al Aug. 7, 2014

Related U.S. Application Data

Continuation of application No. 13/340,324, filed on
Dec. 29, 2011, now Pat. No. 8,712,994.

Int. Cl1.

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 17/30424 (2013.01); GOG6F 17/30584

(2013.01)
Field of Classification Search
USPC e 707/713,715-716
See application file for complete search history.

300

RECEIVE A Q FROM AN -~
EXTERNAL PROGRAM (EP) 310
OVER A NETWORK

(56) References Cited

U.S. PATENT DOCUMENTS

7,788,275 B2 8/2010 Warren et al.

7,801,884 B2 9/2010 Zachariah

7,930,293 B2 4/2011 Fox et al.

8,069,190 B2 11/2011 McColl et al.

8,126,870 B2 2/2012 Chowdhuri et al.

8,166,021 Bl 4/2012 Cao et al.

8,209,664 B2 6/2012 Yu et al.

8,239,847 B2 8/2012 Yuetal.

8,402,033 Bl 3/2013 Mazumdar et al.

8,543,690 Bl 9/2013 Zeitoun et al.
2004/0083199 Al* 4/2004 Govindugari GOGF 17/30303
2005/0049996 Al* 3/2005 Srinivasan GOGF 17/30917
2008/0005194 Al 1/2008 Smolen et al.
2010/0122065 Al 5/2010 Dean et al.

(Continued)
OTHER PUBLICATIONS

“Apache Hadoop”, From Wikipedia, the free encyclopedia [online].
[retrieved Dec. 21, 2011]. Retrieved from the Internet: <URL.: http://
en.wikipedia.org/wiki/Apache_ Hadoop>, 18 pgs.

(Continued)

Primary Examiner — Hanh Thai
(74) Attorney, Agent, or Firm — Schwegman, Lundberg &
Woessner, P.A.

(57) ABSTRACT

Techniques for accessing a parallel database system via an
external program using vertical and/or horizontal partitioning
are provided. An external program to a database management
system (DBMS) configures external mappers to process a
specific portion of query results on specific access module
processors of the DBMS that are to house query results. The
query is submitted by the external program to the DBMS and
the DBMS is directed to organize the query results in a ver-
tical or horizontal manner. Each external mapper accesses its
portion of the query results for processing in parallel on its
designated AMP or set of AMPS to process the query results.

20 Claims, 3 Drawing Sheets

/311

REQUESTING A TOTAL
NUMBER OF PARTITIONS
(PS) EQUAL TO ATOTAL

RECEIVE THE Q WITH IN A STATEMENT THAT CREATES A
PARTITION PRIMARY INDEX (PPI) HAVING THE TOTAL

NUMBER OF PS

NUMBER OF EXTERNAL
MAPPERS (EM)
ASSOCIATED WITH THE EP,
EACH EM USING ONE OF

NO PRIMARY INDEX

CREATE AT LEAST ONE P ON A TABLE THAT HAS I/321

THE PS TO PROCESS A

UNIQUE PORTION OF
QUERY RESULTS (PQR)

LEAVE THE GR UNSORTED ON EACH OF THE 322
AMPS

320, 1

CREATE EACH PARTITION (P)

323

ON EACH ACCESS MODULE
PROCESSCR (AMP), ALL CF
THE PS CREATED IN

PARALLEL WITH ONE
ANOTHER ON THE AMPS AND

DETERMINE HOW TO CREATE THE PS IN A

HORIZONTAL FASHION

EXECUTING THE Q TO
PRODUCE THE QUERY

i

RESULTS (QR) 324

330\ l

ASSIGN A UNIQUE PORTION
OF ROWS {PR) FROM THE
QUERY RESULTS (QR) TO A
UNIQUE ONE OF THE PS

340, 1

ALLOW EACH EM TO ACCESS
ASPECIFIC P FORA
SPECIFIC PORTION OF THE
QR ON A SPECIFIC AMP IN
PARALLEL WITH EACH OF
THE REMAINING EMS

USE A HASHING ALGORITHM ON
CHARACTER DATA IN COLUMNS OF A
TABLE TC CREATE THE PS IN THE
HORIZONTAL FASHION

US 9,336,270 B2
Page 2

(56)

2010/0162230
2010/0179855
2010/0198810
2010/0198811
2010/0281166
2011/0029477

2011/0099194
2011/0154341
2011/0202555
2011/0213802
2011/0258199
2011/0302151
2011/0302226
2011/0302583
2011/0313973
2012/0054182
2012/0095987
2012/0311581
2013/0086116

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al*

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al*
Al

6/2010
7/2010
8/2010
8/2010
11/2010
2/2011

4/2011
6/2011
8/2011
9/2011
10/2011
12/2011
12/2011
12/2011
12/2011
3/2012
4/2012
12/2012
4/2013

Chen et al.
Chen et al.
Graefe et al.
Wiener et al.
Buyya et al.
Tengli GO6F 17/30495
706/54

Trevor et al.
Pueyo et al.
Cordover et al.
Singh et al.
Oliver et al.
Abadi et al.
Abadi et al.
Abadi et al.
Srivas et al.
Gupta et al.
Cheng
Balmin et al.
Agarwal et al.

................ 718/100

2013/0103729 Al 4/2013 Cooney et al.

2013/0151535 Al 6/2013 Dusberger et al.

2013/0152088 Al* 6/2013 Gkantsidis etal. 718/100

2013/0166601 Al* 6/2013 Chrapkoetal. ... 707/798

2014/0226975 Al* 82014 Zhangetal. 398/25
OTHER PUBLICATIONS

U.S. Appl. No. 13/340,324, Notice of Allowance mailed Dec. 18,
2013, 17 pgs.

“Native BI, ETL, & Hadoop/MapReduce Integration”, [online].
[retrieved Dec. 21, 2011]. Retrieved from the Internet: <URL.: http://
www.vertica.com/the-analytics-platform/native-bi-etl-and-
hadoop>, 1 pg.

Dean, J., et al., “MapReduce: Simplified Data Processing on Large
Clusters”, USENIX Association OSDI *04: 6th Symposium on Oper-
ating Systems Design and Implementation, (2004), 137-149.
Kimball, A., “Database Access with Hadoop”, [online]. [retrieved
Dec. 21, 2011]. Retrieved from the Internet: <URL: http://www.
cloudera.com/blog/2009/03/database-access-withhadoop/>, (Mar.
6,2009), 5 pgs.

* cited by examiner

U.S. Patent

110

IDENTIFY A TOTAL NUMBER
OF DISTRIBUTED MAPPERS
(MS) (TNM) AVAILABLE TO
EXTERNALLY ACCESS A
PARALLEL DBMS

May 10, 2016

100

Sheet 1 of 3

US 9,336,270 B2

111

120
N

A

CONFIGURE EACH M TO
INTERACT WITH A UNIQUE
PORTION OF QUERY
RESULTS (PQR) THAT ARE
TO BE PRODUCED ON
MULTIPLE ACCESS
MODULES PROCESSORS
(AMP) OF THE DBMS WHEN
A QUERY (Q) IS EXECUTED
ON THE DBMS

N

SUBMIT THE Q A SINGLE
TIME OVER A NETWORK TO
THE DBMS AND REQUEST A
UNIQUE QUERY IDENTIFIER
(QID) FOR THE Q

140 l

PASS THE QID RECEIVED
BACK FROM THE DBMS TO
EACH OF THE M'S, THE MS

INTERACT OVER THE
NETWORK WITH THE DBMS
USING THE QID TO PROCESS
EACH M'S PQR RESIDING ON
THE MULTIPLE AMP

A 4

OBTAIN THE TNM VIA ONE OF: A COMMAND INPUT, A
CONFIGURATION FILE, AND AN ENVIRONMENTAL
VARIABLE

IDENTIFY A TOTAL NUMBER OF THE MULTIPLE AMP
(TNA) FOR THE DBMS

121
e

:

CONFIGURE EACH M
TO OBTAIN THAT M'S
PQR FROM A
SPECIFIC SET (8S8)
OF AMPS UNIQUE TO
THAT M WHEN TNM >

A

‘ :
CONFIGURE EACHMTO | 122
OBTAIN THAT M'S PQR |/
FROM A SPECIFIC AMP
UNIQUE TO THAT M
WHEN TNM=TNA

TNA i A24
- CONFIGURE EACH OF A
123 FIRST SUBSET (FS) OF MS
TO OBTAIN THAT M'S PQR
CONFIGURE EACH M FROM A SPECIFIC AMP
TO OBTAIN THAT M'S UNIQUE TO THAT M AND
PQR FROM AN REMAINING MS NOT IN THE

ASSIGNED AMP AND A

RANGE OF ROWS ON

THAT ASSIGNED AMP,

THE RANGE OF ROWS
UNIQUE TO THAT M
AND THE RANGE OR

ROWS
REPRESENTING A
SPECIFIC PORTION
OF THE QUERY
RESULTS WHEN THE
TNM < TNA

FIG.1

FS ARE NOT ASSIGNED ANY
AMPS WHEN THE TNM > TNA

125

U.S. Patent May 10, 2016 Sheet 2 of 3 US 9,336,270 B2

RETRIEVE METADATA (MD) | 4

11
OVER ANETWORK FROMA | - 210 /2
DATABASE MANAGEMENT [

SYSTEM (DBMS)

ACQUIRE THE MD AS TABLE DEFINITION INFORMATION
FOR TABLES USED IN THE Q IN ADVANCE OF

SUBMITTING THE Q
220 \
»| DETERMINE THE PPI FROM API MODULES THAT 771
SUBMIT A QUERY (Q) A ARE PROVIDED THE MD FOR PROCESSING L~
SINGLE TIME OVER THE
NETWORK TO THE DBMS
AND USING THE MD TO USE THE TNM AND THE MD TO DETERMINE THE /222
DIRECT THE DBMS STORE PPI
QUERY RESULTS (QR) FOR y 2
THE Q IN A PARTITIONED 223 224
PRIMARY INDEX (PPI) AN A AN y
RESOLVE THE PPI ON A RESOLVE THE PPI
NUMERIC COLUMN (NC) BASED ON
230\ WHEN PRESENT IN THE CHARACTERS
A MD BASED ON AN PRESENT IN SOME
CONFIGURE EACH OF A EXPRESSION: THE NC COLUMNS OF THE MD
TOTAL NUMBER OF MOD THE TNM + 1, A THAT ARE HASHED TO
MAPPERS (TNM) TO TOTAL NUMBER OF INTEGER VALUES, A
REQUEST FROM THE DMBS, PARTITIONS FOR THE TOTAL NUMBER OF
OVER THE NETWORK, A PPl = TNM PARTITIONS FOR THE
UNIQUE PARTITION (P) OR PPl = TO THE TNM
UNIQUE SET OF PARTITIONS
(SP) CREATED FROM THE
PPl TO PROCESS QR 225
\
RENAME EACH COLUMN
WITH THAT COLUMN'S
CORRESPONDING TABLE

NAME TO RESOLVE ANY
NAME CONFLICTS IN THE PPI

226\

REFORMAT THE Q FROM AN ORIGINAL Q TO
INCLUDE THE DIRECTION FOR THE DBMS
STORE QR FOR THE QIN THE PPI

FIG.2

U.S. Patent May 10, 2016 Sheet 3 of 3 US 9,336,270 B2

300
RECEIVE A Q FROM AN a

/}11
EXTERNAL PROGRAM (EP)
OVER A NETWORK RECEIVE THE Q WITH IN A STATEMENT THAT CREATES A
REQUESTING A TOTAL PARTITION PRIMARY INDEX (PPI) HAVING THE TOTAL
NUMBER OF PARTITIONS NUMBER OF PS
(PS) EQUAL TO A TOTAL
NUMBER OF EXTERNAL
MAPPERS (EM) CREATE AT LEAST ONE P ON A TABLE THAT HAS
ASSOCIATED WITH THE EP, NO PRIMARY INDEX 321
EACH EM USING ONE OF
THE PS TO PROCESS A
UNIQUE PORTION OF
QUERY RESULTS (PQR)

AN\
W
o]

LEAVE THE QR UNSORTED ON EACHOF THE |~ 322
AMPS

320\

323
CREATE EACH PARTITION (P)

ON EACH ACCESS MODULE
PROCESSOR (AMP), ALL OF
THE PS CREATED IN
PARALLEL WITH ONE
ANOTHER ON THE AMPS AND

DETERMINE HOW TO CREATE THE PS IN A
HORIZONTAL FASHION

A

A 4

EXECUTING THEQ TO 4
PRODUCE THE QUERY Y
RESULTS (GR) USE A HASHING ALGORITHM ON |~ 324
CHARACTER DATA IN COLUMNS OF A
TABLE TO CREATE THE PS IN THE
330\ HORIZONTAL FASHION
ASSIGN A UNIQUE PORTION

OF ROWS (PR) FROM THE
QUERY RESULTS (QR) TO A
UNIQUE ONE OF THE PS

340\

A

ALLOW EACH EM TO ACCESS
A SPECIFIC P FOR A
SPECIFIC PORTION OF THE
QR ON A SPECIFIC AMP IN
PARALLEL WITH EACH OF
THE REMAINING EMS

FIG. 3

US 9,336,270 B2

1

TECHNIQUES FOR ACCESSING A
PARALLEL DATABASE SYSTEM VIA
EXTERNAL PROGRAMS USING VERTICAL
AND/OR HORIZONTAL PARTITIONING

CLAIM OF PRIORITY

This application is a continuation of and claims the benefit
ofpriority under 35 U.S.C. 120 to U.S. patent application Ser.
No. 13/340,324, filed Dec. 29, 2011, which is set to issue as
U.S. Pat. No. 8,712,994 on Apr. 29, 2014 and which is hereby
incorporated by reference herein in its entirety.

BACKGROUND

After over two-decades of electronic data automation and
the improved ability for capturing data from a variety of
communication channels and media, even small enterprises
find that the enterprise is processing terabytes of data with
regularity. Moreover, mining, analysis, and processing of that
data have become extremely complex. The average consumer
expects electronic transactions to occur flawlessly and with
near instant speed. The enterprise that cannot meet expecta-
tions of the consumer is quickly out of business in today’s
highly competitive environment.

Consumers have a plethora of choices for nearly every
product and service, and enterprises can be created and up-
and-running in the industry in mere days. The competition
and the expectations are breathtaking from what existed just
a few short years ago.

The industry infrastructure and applications have generally
answered the call providing virtualized data centers that give
an enterprise an ever-present data center to run and process
the enterprise’s data. Applications and hardware to support an
enterprise can be outsourced and available to the enterprise
twenty-four hours a day, seven days a week, and three hun-
dred sixty-five days a year.

As a result, the most important asset of the enterprise has
become its data. That is, information gathered about the enter-
prise’s customers, competitors, products, services, financials,
business processes, business assets, personnel, service pro-
viders, transactions, and the like.

Updating, mining, analyzing, reporting, and accessing the
enterprise information can still become problematic because
of the sheer volume of this information and because often the
information is dispersed over a variety of different file sys-
tems, databases, and applications.

In response, the industry has recently embraced a data
platform referred to as Apache Hadoop™ (Hadoop™).
Hadoop™ is an Open Source software architecture that sup-
ports data-intensive distributed applications. It enables appli-
cations to work with thousands of network nodes and
petabytes (1000 terabytes) of data. Hadoop™ provides
interoperability between disparate file systems, fault toler-
ance, and High Availability (HA) for data processing. The
architecture is modular and expandable with the whole data-
base development community supporting, enhancing, and
dynamically growing the platform.

However, because of Hadoop’s™ success in the industry,
enterprises now have or depend on a large volume of their
data, which is stored external to their core in-house database
management system (DBMS). This data can be in a variety of
formats and types, such as: web logs; call details with cus-
tomers; sensor data, Radio Frequency Identification (RFID)
data; historical data maintained for government or industry
compliance reasons; and the like. Enterprises have embraced

10

15

20

25

30

35

40

45

50

55

60

65

2

Hadoop™ for data types such as the above referenced
because Hadoop™ is scalable, cost efficient, and reliable.

Enterprises want a cost-effective solution to access rela-
tional data from Hadoop™ using a MapReduce™ solution,
which heretofore has been elusive and spotty at best in the
industry. That is, enterprise’s want the ability to access their
internally-maintained DBMS’s via Hadoop™ MapReduce™
implementations to improve information integration, scal-
ability, maintenance, and support issues.

SUMMARY

In various embodiments, techniques for accessing a paral-
lel database system via external programs using vertical and/
or horizontal partitioning are presented. According to an
embodiment, a method for accessing a parallel database sys-
tem via external programs using vertical partitioning is pro-
vided.

Specifically, a total number of distributed mappers, which
is available to externally access a parallel Distributed Data-
base Management System (DBMS), is identified. Each map-
per is configured to interact with a unique portion of query
results that are to be produced on multiple access module
processors of the DBMS when a query is executed on the
DBMS. The query is submitted a single time over a network
to the DBMS and a unique query identifier for the query is
requested from the DBS. Finally, the query identifier received
back from the DBMS is passed to each of the mappers, and the
mappers interacting over the network with the DBMS using
the query identifier to process each mapper’s unique portion
of the query results residing on the multiple access module
processors.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a method for accessing a parallel
database system via external programs using vertical parti-
tioning, according to an example embodiment.

FIG. 2 is a diagram of a method for accessing a parallel
database system via external programs using horizontal par-
titioning, according to an example embodiment.

FIG. 3 is a diagram of another method for accessing a
parallel database system via external programs using hori-
zontal partitioning, according to an example embodiment.

DETAILED DESCRIPTION

Initially for purposes of illustration and comprehension
and before the FIGS. are discussed, some context and
examples are presented to highlight and illustrate the tech-
niques being presented herein and below.

Some initial context related to Hadoop™ and MapRe-
duce™ is provided for some comprehension purposes for the
details that follow.

Context

With MapReduce™ functions during the map phase the
framework splits input data set into a large number of frag-
ments and assigns each fragment to a map task. The frame-
work also distributes the many map tasks across the cluster of
nodes on which it operates. Each map task consumes key/
value pairs from its assigned fragment and produces a set of
intermediate key/value pairs. For each input key/value pair
(K,V), the map task invokes a user defined map function that
transmutes the input into a different key/value pair (K',V").

US 9,336,270 B2

3

Following the map phase the framework sorts the interme-
diate data set by key and produces a set of (K',V'*) tuples so
that all the values associated with a particular key appear
together. It also partitions the set of tuples into a number of
fragments equal to the number of reduce tasks.

In the reduce phase, each reduce task consumes the frag-
ment of (K',V'*) tuples assigned to it. For each such tuple,
each reduce task invokes a user-defined reduce function that
transmutes the tuple into an output key/value pair (K,V).
Once again, the framework distributes the many reduce tasks
across the cluster of nodes and deals with shipping the appro-
priate fragment of intermediate data to each reduce task.

One approach for a MapReduce™ program to access rela-
tional data is to first use a DBMS’s export utility to export the
results of desired business queries to a local file and then load
the local file to Hadoop’s™ Distributed File System (HDFS)
orin a stream fashion without the intermediate file. However,
many times MapReduce™ programmers feel that it is more
convenient and productive to directly access relational data
from within their MapReduce programs without the external
steps of exporting data from a DBMS and loading them to
Hadoop™. Recognizing the need of integrating relational
data in Hadoop™, some companies have focused on com-
mercializing Hadoop™ related products and services; pro-
viding a few Open-Sourced JAVA classes (mainly DBInput-
Format), which is in fact now part of the main Hadoop™
distribution, for purposes of allowing MapReduce™ pro-
grammers to send Structured Query Language (SQL) queries
through the standard JAVA Database Connectivity (JDBC)
interface to manipulate relational data. The basic idea is that
a MapReduce™ programmer provides a business query in
his/her program. Then, the resulting execution is transparent
to the MapReduce™ programmer. The DBInputFormat class
associates a modified SQL query with each Mapper. Then,
each Mapper sends a query through standard JDBC drivers to
the DBMS and gets back the query result and works on the
results in parallel. The DBInputFormat approach is correct;
since it makes sure that the union of all queries sent by all
Mappers is equivalent to the original business query. While
the DBInputFormat JAVA Application Programming Inter-
face (API) and implementation provided by in the industry
clearly streamlines the process of accessing relational data,
the performance cannot scale.

The following example is used to explain the performance
issues. Assume a customer wants to retrieve all data stored in
a table called “employees” and uses 10 Mappers do some
analysis on that data. The customer might send the following
business query through the JDBC driver to a DBMS by using
the DBInputFormat class:

select emp_id, emp_name from employees.

With the DBInputFormat approach, Hadoop™ first sends
the following query to get the size of the table “select count(*)
from employees™ (if the user does not provide a so called
“count query” in addition to the first business query to com-
pute the size of the business query). Assume the number of
rows in the result is 1005. Then, each one of the first 9
Mappers started by Hadoop™ sends the following query to
process 1005/10=100 rows from the database:

select emp_id, emp_name from employees

order by emp_id

limit 100

offset offset_i*100.

Where offset_i is O for the first Mapper, 1 for the second
Mapper . . . 8 for the 9 Mapper.

The last Mapper sends the following SQL query to process
the last 105 rows from the database:

select emp_id, emp_name from employees

35

40

45

50

55

60

order by emp_id

limit 105

offset 900

The order-by column (emp_id) is required and provided by
the programmer through the DBInputFormat class, which is
used to correctly partition the query’s results among all Map-
pers, even if the MapReduce program itself does not need to
sort the rows.

Essentially each Mapper sends the same business query to
the database but with different LIMIT and OFFSET clauses to
get and process a subset of the relational data. Clearly, this is
not efficient for the DBMS to execute as many queries as the
number of Mappers in the Hadoop™ system (the number of
Mappers can be hundreds or more).

Discussion of Vertical and Horizontal Partitioning
Techniques

The aforementioned performance issues with conventional
approaches are especially serious for parallel DBMS imple-
mentations, which tend to have higher number of concurrent
queries and store larger datasets. Also, the extra ordering/
sorting is an expensive operation in parallel DBMS’s because
the rows in a table are not stored on a single node in most cases
and sorting requires row redistribution. Another issue to
adopt the DBInputFormat approach is that some DBMS do
not support the LIMIT/OFFSET constructs since it is not
included in ANSI SQL standard). A common thing between
Hadoop™ and large scale data warehouses is that both run on
multiple nodes, which creates opportunities for more efficient
integration of Hadoop™ and these data warehouses that
embodiments herein leverage.

Approaches herein utilize an approach for allowing effi-
cient access of relational data from MapReduce™ programs
to data warehouses based on vertical partitioning and/or hori-
zontal partitioning. The vertical and horizontal approaches
are discussed within the context of a business query (Q) sent
by a MapReduce™ program. For ease of comprehension,
only SELECT statements are considered; however it is noted
the techniques discussed herein are not so limited.

Novel Vertical Partitioning Approach

The business Q is sent only once to a parallel DBMS
(distributed and implemented across multiple nodes that can
currently process in parallel). Notice that in a parallel DBMS,
the Q result is stored on all nodes in most cases before the
query result is sent to the client. It is also noted that at run time
when a MapReduce™ program is started, the input format of
the implementations know how many Mappers are started by
Hadoop™ (the number is either provided by the programmer
from command-line or from a Hadoop™ configuration file).

So, continuing with the example, let the number of Map-
pers be M and the number of Access Module Processors
(AMPs) in the parallel DBMS be N. The technique informs
each Mapper as to which AMPs to connect in orderto get each
Mapper’s portion of the Q’s result in the following manner.

1) It M==N, each Mapper is configured to connect to a
unique one of AMPs. An order of assignment for AMPs to
Mappers can be that the first Mapper connects to the first
AMP . . . the last Mapper connects to the last AMP. Each
Mapper gets every row in the Q result stored on the AMP it
connects to. In the Application Programming Interface (API),
when the business Q is sent to the parallel DBMS, a unique
Identifier (ID) is also passed to the DBMS to be associated
with the subsequent Q result. When each Mapper connects to

US 9,336,270 B2

5

parallel DBMS that Mapper also passes the same unique 1D
again to parallel DBMS to identify the Q result it wants to
retrieve. (First case)

2) If M<N, each Mapper connects to TRUNC(N/M) num-
ber of unique AMPs except that the last Mapper connects to
N-(remaining unassigned AMPS) AMPs. For example, there
are 10 Mappers and 105 AMPs, each of the first 9 Mappers
connect to 10 AMPs (Mapper 1 connects to the first 10 AMPs,
Mapper 2 connects to the second 10 AMPs-N=105, M=10;
M.,,.,=TRUNC(105/10)=10 AMPs) while the last Mapper
connects to the last 15 AMPs (M,,,,~=105-(10x9)=15). Each
Mapper retrieves every row stored on the AMPs it connects to.
A different assignment strategy can be deployed as well; for
example, ensure no Mapper connects to more than one AMP
than any other Mappers. Another approach is N/M is 10.5 so
each is assigned to 10 unique AMPs, the left over 5 AMPS
randomly assigned to one or more M’s. The point is to suffi-
ciently and uniquely distribute each of the AMPs to a unique
M; such that a variety of approaches can be chosen. (Second
Case)

3) If M>N, two choices exist. (Third Case)

A) The first choice is to only choose N Mappers to work
with, which means that M-N number of Mappers do not
connect to the parallel DBMS and these Mappers do not do
any work. So, this case becomes the first M==N case.

B) The second choice is to allow each Mapper to retrieve
only a portion of the Q result stored on an AMP. Thus, when
a Mapper connects to an AMP, it not only needs to provide the
unique ID used to identify the Q result associated with a
certain Q like in the first M==N case, but also needs to provide
a range (<start, end>) to tell the AMP that the Mapper only
wants to get a portion of the rows stored on the AMP to which
it connects. Notice that the AMPs do not need to sort the Q
result (if the business Q does not have an ORDER BY clause),
unlike in the conventional implementations where an
ORDER BY clause must be used to correctly partition Q
result among Mappers. In this M>N case, one assignment can
be that each one of the first M—(M % N) Mappers (the i”
Mapper) asks for N/(M-(M % N) portion of the Q result
stored on the [M/N]’h AMP, and the remaining Mappers all
connect to the last AMP. All Mappers connected to the same
AMP disjointed partition the Q result they retrieve from the
AMP they connect to. For example, ifthere are 1005 Mappers
(M=1005) and 10 AMPs (N=10), then the first 100 Mappers
all connect to the first AMP while each Mapper asks for 1/100
of the query result stored in the first AMP . . . the Mappers
numbered from 801 to 900 all connect to the 9% AMP. The last
105 Mappers all connect to the last AMP while each retrieves
1/105 portion of the query result on the last AMP.

In any of the three cases, any type of assignment which
makes sure that every row in the query result is read and only
read by a Mapper is permissible; thus, other assignments can
be made as well without detracting from the teachings pre-
sented herein.

This technique works when Hadoop™ needs to restart
failed Mappers, since the assignment of AMPs to Mappers are
stored and managed by Hadoop’s metadata infrastructure.
When a failed Mapper is restarted on a different Hadoop™
node, Hadoop™ still knows what AMPs (and what ranges in
the query result stored on these AMPs that the restarted Map-
per has to retrieve) the Mapper needs to reconnect to. This
capability is provided by the Hadoop’s infrastructure. So,
failover considerations are accounted for by Hadoop’s™
existing infrastructure with this approach.

Moreover, in the presented vertical partitioning technique,
each Mapper pulls data from the AMPs in a parallel DBS
system. A push-version of the presented vertical partitioning

10

15

20

25

30

40

45

55

60

65

6

technique also works with more communication between
Hadoop™ and the parallel DBMS.

Novel Horizontal Partitioning Technique

Herein, there are two available techniques for allowing
efficient access of relational data from MapReduce™ pro-
grams of Hadoop™ to a parallel DBMS based on horizontal
partitioning via the DBMS’s Partition Primary Index (PPI)
feature. The two techniques are again discussed within the
context of a business Q sent by a MapReduce™ program.
Again, for purposes of comprehension, just SELECT state-
ments are considered; but it is noted that the embodiments
herein are not so limited.

First Approach for the Horizontal Partitioning
Technique

Essentially, a parallel DBMS connector application for
Hadoop™ (referred to as DBMSInputFormat herein) sends
the business Q once to parallel DBMS, Q is executed once and
the result is stored in a PPI (Partitioned Primary Index) table
T. Then, each Mapper from Hadoop™ sends a new query Q',
which just asks for one partition (or more partitions) on each
AMP. It is noted that at run time when a MapReduce™
program is started, DBMSInputFormat implementation
knows how many Mappers are started by Hadoop™ (the
number is either provided by the programmer from com-
mand-line or from a Hadoop™ configuration file).

Two issues are to be addressed with the first approach for
the horizontal partitioning technique.

1) A decision is made as to which column(s) to build the
PPI on. Notice that any business Q can be sent to the parallel
DBMS. Ideally, the number of partitions is designated as the
same as the number of Mappers: thus each Mapper asks only
for a single partition. Another approach is to allow program-
mers to provide the PPI expressions through a DBMSInput-
Format API, permitting programmer control over perfor-
mance.

2) When creating the PPI table to store the Q results,
possible column name conflicts are resolved. As an example,
assume the business Q is “select * from T1, T2 where
T1.a=T2.b” and that T1 and T2 have columns of the same
names. An existing parallel DBMS will complain about a
column name conflict if a table is created to store the above Q
result.

In the horizontal partitioning technique, the DBMSInput-
Format is configured to retrieve metadata from the parallel
DBMS and then decide on which columns to build PPI. For
example, if there is a numeric column X, the DBMSInput-
Format connector may choose to build PPI based on the
expression “X mod M+1” where M is the number of Mappers
started by the Hadoop™ system. If there are no numeric
columns, characters in some columns can be hashed and their
hash values can be used as integers to build PPI. To address
the second issue, the DBMSInputFormat connector is config-
ured to retrieve metadata from the parallel DBMS and rename
columns in the results if necessary. For example, column
names can be prefixed with table names to remove column
name conflicts. After the two issue are addressed, the DBM-
SInputFormat sends a new business query Z to the parallel
DBMS and Z looks like the following,

Create table T as (Q') with data

PRIMARY INDEX (cl)

PARTITION BY ¢2 MOD 100+1.

Q' is rewritten from the original business query Q after
renaming to remove column name conflict (issue 2). Both c1,

US 9,336,270 B2

7

c2 are example columns on which to build PRIMARY
INDEX (PI) and PPI (issue 1). 100 as used in Z is an example
number of Mappers. After the DBMSInputFormat class sends
the new business query Z to the parallel DBMS and the Z is
executed, every Mapper (each Mapper is given a unique ID
from 1 to N) sends the following query to retrieve a portion of
the query result and works on them in parallel,

Select * from T where PARTITION=n.

Where, nis the unique ID of the Mapper sending the above
query. Notice that if the original business Q just selects data
from a single table, which has PPI already, then another table
does not have to be created. As an optimization technique, the
existing PPI is used to partition the data that each Mapper
should receive. After all Mappers retrieve the data, the table T
can be deleted.

Second Approach for the Horizontal Partitioning
Technique

The second approach is similar to the first approach in that
the concept of PPI is used. However, the second approach
requires minimal work on the DBMSInputFormat connector
side but uses new features implemented by the parallel
DBMS server. In this second approach, the DBMSInputFor-
mat class sends the following business Q to the parallel
DBMS, which uses syntax currently not supported by exist-
ing DBMS.

Create PPI (100 Partitions) table T as (Q) with data

The parallel DBMS is expected to automatically address
the two issues mentioned in the first approach: removing
column name conflicts and creating the correct PI and PPI.
With the sample number 100 (which is the number of Map-
pers that communicate with the parallel DBMS in the ongo-
ing example), that parallel DBMS is asked to build 100 par-
titions. Currently, a PPI can only be built on a table with PI.
So, one additional optimization here is to allow a PPl on a No
Primary Index (NoPI) table. Thus, partitions are directly built
in parallel on every AMP without moving the Q results of the
business Q across AMPs. A further optimization is to not sort
the rows on any AMP to build the 100 partitions. The first
1/100 portion of the query result on any AMP can be assigned
the partition number 1 . . . the last 1/100 portion of the Q result
on any AMP can be assigned the partition number 100.

Similar to the first solution, after the DBMSInputFormat
class sends the new business query to the DBMS and the
query is executed, every Mapper sends the following query to
retrieve a portion of the query result and works on them in
parallel,

Select * from T where PARTITION=n.

With the above detail of the vertical and horizontal parti-
tioning techniques presented, various embodiments are now
presented with the discussion of the FIGS. 1-3.

FIG.1 is a diagram ofa method 100 for accessing a parallel
database system via external programs using vertical parti-
tioning, according to an example embodiment. The method
100 (hereinafter “vertical integrator”) is implemented as
instructions within a non-transitory computer-readable stor-
age medium that execute on one or more processors, the
processors specifically configured to execute the vertical inte-
grator. Moreover, the vertical integrator is programmed
within a non-transitory computer-readable storage medium.
The vertical integrator is also operational over a network; the
network is wired, wireless, or a combination of wired and
wireless.

10

15

20

25

30

40

45

50

55

60

65

8

The vertical integrator presents another and in some ways
an enhanced processing perspective to that which was dis-
cussed and shown above with respect to the vertical integra-
tion technique.

At 110, the vertical integrator identifies a total number of
mappers available to externally access a parallel DBMS. In an
embodiment, the vertical integrator is implemented in a
Hadoop™ platform as the DBMSInputFormat described
above and each mapper is provided as a MapReduce™ pro-
grams/functions as described above. Other implementations
may be used where the vertical integrator and the mappers are
modules that support parallel processing of query results that
exists outside a native DBMS implementation. That is, the
operations and processing of the vertical integrator and the
mappers are external and not supported or part of the DBMS
being accessed remotely over a network connection, such as
a wide-area network (WAN) (e.g., Internet, and others).

According to an embodiment, at 111, the vertical integrator
obtains the total number of mappers via one or more of: a
command line processing parameter/input value, a configu-
ration file for when the vertical integrator is initiated, and/or
an environmental variable set within the processing environ-
ment of the vertical integrator.

At 120, the vertical integrator configures each mapper to
interact with a unique portion of query results that at this point
in processing has not yet been produced but all to be produced
on multiple access module processors (AMPs) of the DBMS
when a query (that produces the query results) is eventually
(discussed below) executed on the DBMS. Essentially, no
mapper processes a same portion of the query results.

According to an embodiment, at 121, the vertical integrator
identifies atotal number of the multiple AMPs for the DBMS.
This too can be achieved via configuration or command-
driven manners as discussed above at 111. In some situations,
the vertical integrator uses an API command to query the
DBMS to identify the total number of multiple AMPs. Once
the total number of mappers and the total number of AMPs are
known to the vertical integrator, assignment to each mapper a
unique portion of the as yet unavailable query results can
occur under a variety of conditions that exist.

For example, at 122, when the total number of mappers is
equal to the total number of AMPs, the vertical integrator
configures each mapper with a specific AMP that is unique to
that mapper to the exclusion of the remaining mappers. So,
there is a one-to-one relationship between each mapper and
each AMP.

Under another condition where the total number of map-
pers is greater than the total, at 123, the vertical integrator
configures each mapper to obtain that mapper’s unique por-
tion of the as-yet unresolved query results from a specific set
of AMPs unique to that mapper. This scenario was discussed
above and exists such that at least one of the total number of
mappers works with more than one of the AMPs. It is similar
to the processing of 122 in that no two mappers work with a
same one of the AMPs.

Another situation can exists when the total number of
mappers is greater than the total number of AMPs. For
example, at 124, the vertical integrator configures each of a
first subset of mappers to obtain that mapper’s unique portion
of the as-yet unresolved query results from a specific AMP.
The each of the remaining mappers not part of the first subset
are not assigned to any AMP at all. So, again no two mappers
work with the same one of the AMPs (similar to 122 and 123)
but in this situation there is one or more mappers that do no
work at all and are essentially unused.

In a final condition, at 125, exists when that total number of
mappers is less than the total number of AMPs. This means

US 9,336,270 B2

9

that at least one of the mappers has to work with a same AMP
when the query results are ultimately processed by the map-
pers. Here, the vertical integrator configures each mapper to
obtain that mapper’s portion of the as-yet unresolved query
results from an assigned AMP and a range or rows (for the
as-yet unresolved query results) on that assigned AMP. The
range of rows assignment is unique to each mapper and rep-
resents a specific portion of the as-yet unresolved query
results. So, each range of rows in the total range for the rows
has a one-to-one relationship with each mapper. But, each
mapper or at least one mapper has a one-to-many relationship
with the AMPs.

At 130, the vertical integrator submits the query a single
time over a network to the DBMS and simultaneously
requests a unique query identifier for the submitted query.
This is different from existing Hadoop™ approaches where
the query is actually submitted by each mapper, which in the
conventional approach means; the DBMS may process a
same query hundreds or even thousands of times and is
extremely inefficient. Here, the vertical integrator submits the
query once only.

At 140, the vertical integrator passes the query identifier,
which the DBMS returned to the vertical integrator, to each of
the mappers. Each mapper then interacts with its unique
portion of the query results (produced by the DBMS) using
the query identifier (to uniquely identify the query results to
the exclusion of other queries the DBMS may be handling).
Each mapper either interacts with a unique AMP or a unique
range of rows for the query results on any given AMP (as
described above with respect to the processing at 125) (it is
also noted under some conditions, such as that which was
explained at 124, some mappers may not be involved in
processing the query results at all).

The processing of the FIG. 1 describes techniques for
accessing a parallel DBMS via external programs (the verti-
cal integrator and the mappers and external to the DBS) using
vertical partitioning of the query results. FIGS. 2 and 3 now
discuss different approaches for these external programs to
access and process query results of a DBMS using two-
approaches to horizontal partitioning.

FIG. 2 is a diagram ofa method 200 for accessing a parallel
database system via external programs using horizontal par-
titioning, according to an example embodiment. The method
200 (hereinafter “horizontal integrator”) is implemented as
instructions within a non-transitory computer-readable stor-
age medium that execute on one or more processors, the
processors specifically configured to execute the horizontal
integrator. Moreover, the horizontal integrator is pro-
grammed within a non-transitory computer-readable storage
medium. The horizontal integrator is also operational over a
network; the network is wired, wireless, or a combination of
wired and wireless.

The horizontal integrator presents the processing that was
discussed and shown above with respect to the first approach
of the horizontal integration technique.

Similar to the discussion of the FIG. 1, the horizontal
integrator is, in an embodiment, implemented as a custom
Hadoop™ program that utilizes a plurality of MapReduce™
programs/function to externally access AMPs ofa DBMS and
submit and process query results for a query processed by the
DBMS and housed on the AMPs. Different from the FIG. 1,
the horizontal integrator processes the query results using
horizontal partitioning of the results whereas the FIG. 1 used
vertical partitioning.

At 210, the horizontal integrator retrieves metadata over a
network from a DBMS.

10

15

20

25

30

35

40

45

50

55

60

65

10

According to an embodiment, at 211, the horizontal inte-
grator acquires the metadata as table definition information
for tables used in the query in advance of actually submitting
the query. This metadata provides column types and informa-
tion for tables used in the query.

At 220, the horizontal integrator submits the query a single
time over the network to the DBMS using the metadata to
direct the DBMS to store the query results for the query in a
custom defined partitioned primary index (PPD.

In an embodiment, at 221, the horizontal integrator deter-
mines the PPI from API modules provided the metadata as
input for processing. In this way, resolution of the PPI can be
custom developed by developers in custom API modules that
interact with the horizontal integrator, such that the horizontal
integrator provides the metadata and the total number of
mappers as input to the modules and the modules return SQL
statements to include with the query that direct the DBMS to
create a specific PPI for the query results of the query on the
AMPs of the DBMS.

Inan embodiment, at 222, the horizontal integrator uses the
total number of mappers and the metadata to determine the
PPI. Determination of the total number of mappers was dis-
cussed in detail above with reference to the FIG. 1 and can be
used similarly here with the discussion of the horizontal inte-
grator.

A variety of alternatives for resolving the PPI definition
that is provided with the query to the DBMS can be used.

For example, at 223, the horizontal integrator resolves the
PPI based on a numeric column present in the metadata using
an expression, such as: the numeric column MOD the total
number of mappers+1. The total number of mappers is equal
to the total number of resulting partitions in the PPI definition
resolved.

Alternatively, at 224, and if there are no numeric columns
or if desired and even when numeric columns exist, the hori-
zontal integrator resolves the PPI based on characters present
in some columns of the metadata that are then hashed into
integer values. Again, the total number of resulting partitions
in the PPI definition is equal to the total number of mappers.

Continuing with the embodiment of 224 and at 225, the
horizontal integrator reformats the query from an original
query to include the direction for the DBMS to store the query
results for the query in the PPIL. In other words, the single
submitted query includes the PPI statements when singularly
submitted to the DBMS. There need not be multiple interac-
tions with the DBMS from the horizontal integrator to submit
the query and to direct the DBMS to create the partitions for
the PPL.

At 230, the horizontal integrator configures each of the
total number of mappers to request from the DBMS, over the
network, a unique partition or unique set of partitions created
from the PPI. So, each mapper processes a unique partition of
the query results or a unique set of partitions. No mapper
processes a same partition as another one of the mappers.

FIG. 3 is a diagram of another method 300 for accessing a
parallel database system via external programs using hori-
zontal partitioning, according to an example embodiment.
The method 300 (hereinafter “horizontal partition manager™)
is implemented as instructions within a non-transitory com-
puter-readable storage medium that execute on one or more
processors, the processors specifically configured to execute
the vertical integrator. Moreover, the horizontal partition
manager is programmed within a non-transitory computer-
readable storage medium. The horizontal partition manager is
also operational over a network; the network is wired, wire-
less, or a combination of wired and wireless.

US 9,336,270 B2

11

The horizontal partition manager presents an alternative
approach to that which was discussed above with reference to
the FIG. 2; moreover, processing associated with the horizon-
tal partition manager was discussed above with reference to
the second approach of the horizontal integration technique.

It is noted that for the processing of the horizontal partition
manager an existing DBMS that is used is enhanced to permit
that DBMS to create a PPI on a No Primary Index (NoPI)
table within the DBMS. This enhancement processing is
described as the horizontal partition manager. In other words,
the processing of the FIGS. 1 and 2 were presented from the
prospective a an external program to the DBMS; but the
horizontal partition manager is presented from the prospec-
tive of enhanced features that operate within the DBMS that
interface over the network with external programs, such as
ones developed and implemented in Hadoop™ using MapRe-
duce™ programs/modules.

At 301, the horizontal partition manager receives a query
from an external program over a network requesting a total
number of partitions equal to a total number of partitions
equal to a total number of external mappers associated with
the external program. Each external mapper using one of the
partitions to process a unique portion of the query results. The
external mappers were discussed above as the mappers, and
the external program was discussed above in the context of
the FIGS. 1 and 2; however unlike the FIG. 2 the external
program does not resolve how to create the partitions; rather
that is left up to the horizontal partition manager, which is an
enhancement to a DBMS. The job of the external programmer
in the embodiment of FIG. 3 is to request a total number of
partitions with a query from the horizontal partition manager
and then configure each of the external mappers to subse-
quently process the resulting query results on its pre-desig-
nated access module processor of the DBMS.

According to an embodiment, at 311, the horizontal parti-
tion manager receive the query with a statement that creates a
partition primary index that has the total number of partitions.

At 320, the horizontal partition manager creates each par-
tition on each access module processor. All of the partitions
are created in parallel with one another on the access module
processors and the query is executed to produce the query
results.

In an embodiment, at 321, the horizontal partition manager
creates at least one partition on a table that has no primary
index (an enhancement over existing DBMS implementa-
tions).

According to an embodiment, at 322, the horizontal parti-
tion manager leaves the query results unsorted on each of the
AMPS.

In one scenario, at 323, the horizontal partition manager
determines how to create the partitions in a horizontal fash-
ion.

Continuing with the embodiment of 323 and at 324, the
horizontal partition manager uses a hashing algorithm on
character data in columns of a table to create the partitions in
the horizontal fashion.

The above description is illustrative, and not restrictive.
Many other embodiments will be apparent to those of skill in
the art upon reviewing the above description. The scope of
embodiments should therefore be determined with reference
to the appended claims, along with the full scope of equiva-
lents to which such claims are entitled.

The invention claimed is:

1. A method, comprising:

configuring, by a processor, mappers for handling results
from a query;

30

40

45

50

55

65

12

configuring each mapper to interact with a unique portion
of the results from remaining ones of the mappers,
wherein configuring each mapper further includes con-
figuring, by the processor, each node of a plurality of
nodes associated with the mappers for receiving all of
the results for the query for ensuring that each mapper
has access to all of the results on that mapper’s node;

submitting the query for processing; and

passing a query identifier for the query to each of the

mappers for handling that mapper’s unique portion of
the results returned for the processed query.

2. The method of claim 1, wherein configuring the mappers
further includes identifying sets of the mappers by interacting
with access module processors for a Distributed Database
Management System (DBMS), each access module proces-
sor having a unique set of the mappers.

3. The method of claim 2 further comprising, removing
some of the mappers from a particular set for handling the
results when a total number of the mappers is greater than a
total number of the access module processors.

4. The method of claim 1, wherein submitting the query
further includes sending the query to a Distributed Database
Management System (DBMS) for processing.

5. The method of claim 4, wherein sending further includes
instructing the DBMS to store the results in a Partitioned
Primary Index (PPI).

6. The method of claim 5, wherein instructing further
includes resolving a total number of partitions for the PPI
based on a total number of the mappers.

7. The method of claim 4, wherein sending further includes
reformatting the query before sending to the DBMS to
include query processing recognized by the DBMS that
results in the results being stored in a Partitioned Primary
Index (PPD).

8. The method of claim 7, wherein reformatting further
includes associating the PPI with horizontal partitions of the
DBMS.

9. The method of claim 8 further comprising configuring
access module processors of the DBMS, each access module
processor configured to handle one of the horizontal parti-
tions, and each access module having a unique set of the
mappers.

10. A method, comprising:

acquiring, by a processor, a total number of access module

processors (AMPs) for a Distributed Database Manage-
ment System (DBMS) and a total number of mappers;
assigning sets of the mappers to the AMPs;

receiving a query directed to the DBMS;

configuring each set of the mappers to handle a portion of

results from the query, wherein configuring each set of
mappers further includes configuring, by the processor,
each node of a plurality of nodes associated with the sets
of mappers for receiving all of the results for the query
for ensuring that each set of mappers has access to all of
the results on that set’s node; and

submitting the query to the DBMS for processing.

11. The method of claim 10, wherein acquiring further
includes removing some of the mappers when the total num-
ber of the AMPs exceed the total number of the mappers.

12. The method of claim 10, wherein assigning further
includes assign each unique mapper to a unique one of the
AMPs when the total number of the mappers is equal to the
total number of the AMPs.

13. The method of claim 10, wherein assigning further
includes assigning at least one mapper to two or more of the
AMPs.

US 9,336,270 B2

13

14. The method of claim 10, wherein configuring further
includes assigning each set of mappers one or more unique
rows in a table for the results that is returned by the DBMS in
processing the query.

15. The method of claim 10, wherein configuring further
includes directing each mapper to connect in parallel to one
another with the DBMS to simultaneously receive the results
returned by the DBMS in processing the query.

16. The method of claim 10, wherein configuring further
includes providing each portion of the results as a unique
range for the results.

17. The method of claim 10, wherein submitting further
includes instructing the DBMS to leave the results unsorted
when submitting the query to the DBMS.

18. A Distributed Database Management System (DBMS),
comprising:

network nodes distributed and in communication over a

network;

10

15

14

at least one of the network nodes configured with an inte-
grator module that executes on that at least one of the
network nodes, and the integrator module configured to:
i) execute on the at least one of the network nodes, ii)
configure and assign mappers for handling results from
a query submitted to the DBMS, and each mapper con-
figured to handle a unique portion of the results, and
configure each network node to receive all of the results
for the query to ensure that each mapper has access to all
of the results from that mapper’s network node, and iii)
submit the query to the DBMS for processing.

19. The DBMS of claim 18, wherein the integrator module
is further configured to, in ii), assign each portion as a unique
vertical partitioning of the results to each of the mappers.

20. The DBMS of claim 18, wherein the integrator module
is further configured to, in ii), assign each portion as a unique
horizontal partitioning of the results to each of the mappers.

#* #* #* #* #*

